使用 let
关键字声明变量, 默认不可变( immutable
),使用 mut
声明可变变量。
fn main() {
let _immutable_binding = 1;
let mut mutable_binding = 1;
println!("Before mutation: {}", mutable_binding);
mutable_binding += 1;
println!("After mutation: {}", mutable_binding);
// Error! Cannot assign a new value to an immutable variable
_immutable_binding += 1;
}
Rust 是强类型静态语言,各变量都需要明确的类型。但一般不需要指定类型,编译器可以根据当前赋值或后续操作、赋值等情况,对变量类型进行自动推导:
// 编译器根据 expresion 结果或者后续对 var 的使用方式进行推导。
let var = expression;
fn main() {
// 数值类型可以使用类型后缀
let elem = 5u8;
// Vec 是泛型类型,元素类型由 Rust 推导,等效于:
// let mut vec: Vec<_> = Vec::new();
let mut vec = Vec::new();
vec.push(elem);
println!("{:?}", vec);
}
变量必须先被声明并且初始化后才能使用,声明和初始化可以分开进行:
fn main() {
let another_binding;
// 变量被声明后未初始化,使用时报错。
// println!("another binding: {}", another_binding);
// 变量被初始化后可以使用。
another_binding = 1;
println!("another binding: {}", another_binding);
// 先声明变量,但未初始化。
let a_binding;
{
let x = 2; // 声明并初始化变量
a_binding = x * x; // 变量被首次初始化后,后续才能使用。
}
println!("a binding: {}", a_binding);
// 使用复杂的条件判断来初始化变量。
let name;
if user.has_nickname() {
name = user.nickname();
} else {
name = generate_unique_name();
user.register(&name);
}
}
Rust block 可以返回值, 可用于初始化复杂的变量值:
let msg = {
let dandelion_control = puffball.open();
dandelion_control.release_all_seeds(launch_codes);
// 表达式结尾没有分号,结果作为 block 的返回值。
dandelion_control.get_status()
};
// match/if/loop 等语句均有返回值,各分支返回值类型必须一致。
let display_name = match post.author() {
Some(author) => author.name(),
None => {
let network_info = post.get_network_metadata()?;
let ip = network_info.client_address();
ip.to_string()
}
};
// 如果 if 表达式结果没有用于赋值, 则 block 不能有返回值:
let suggested_pet = if with_wings { Pet::Buzzard } else { Pet::Hyena }; // OK
if preferences.changed() {
page.compute_size() // oops, missing semicolon
}
// error[E0308]: mismatched types
// 22 | page.compute_size() // oops, missing semicolon
// | ^^^^^^^^^^^^^^^^^^^- help: try adding a semicolon:
// `;`
// ||
// | expected (), found tuple |
// = note: expected unit type `()`
// found tuple `(u32, u32)`
Rust 变量默认 都需要被使用
,否则编译器警告,解决办法:
- 在变量名前加
_
来表明该变量可能不被使用; - 添加
#![allow(unused)]
或#[allow(unused)]
属性宏;
fn main() {
let an_integer = 1u32;
let a_boolean = true;
let unit = ();
println!("A boolean: {:?}", a_boolean);
println!("Meet the unit value: {:?}", unit);
// 忽略警告
let _unused_variable = 3u32;
}
变量名是 block scope
:
- 变量可以被 shadow(同 block 或子 block shadow 同级或父级定义的同名变量),但 shadow 并不会 drop 前面变量的值;
- shadow 可以为同名变量指定不同的可变性和变量值类型;
fn main() {
// 未使用变量 shadow 时,需要定义临时变量
for line_result in file.lines() {
let line = line_result?;
// ...
}
// 使用同名变量 shadow,减少一个变量定义
for line in file.lines() {
let line = line?;
// ...
}
let x = 5;
let x = x + 1; // shadow 上一个变量 x
{
let x = x * 2; // shadow 上一级变量 x
println!("The value of x in the inner scope is: {}", x);
}
// shadow 不会 drop 对象, x 继续使用
println!("The value of x is: {}", x);
let shadowed_binding = 1;
{
let shadowed_binding = "abc"; // shadow 的变量类型可以不同
}
println!("outside inner block: {}", shadowed_binding);
let shadowed_binding = 2;
println!("shadowed in outer block: {}", shadowed_binding);
let mut _mutable_integer = 7i32;
{
// shadow 时去掉了 mut,变量不可变
let _mutable_integer = _mutable_integer;
_mutable_integer = 50; // 报错!
}
_mutable_integer = 3; // shadow 结束,变量恢复为前面外层定义的可变变量
}
Rust 默认不对变量做自动类型转换,但是在变量赋值, 函数传参等场景, Rust 会隐式的做类型转换,称为 type coercion
。
在表达式中使用 as
运算符进行显式类型转换:
#![allow(overflowing_literals)]
fn main() {
let decimal = 65.4321_f32;
// 错误:除了 type coercion 外,不同类型变量值之间不能赋值
let integer: u8 = decimal;
// Explicit conversion
let integer = decimal as u8;
// integer 作为 unicode point,可以被转换为 char
let character = integer as char;
// 错误,浮点数不能被转换为 char
let character = decimal as char;
// OK, u16 可以存下 1000
println!("1000 as a u16 is: {}", 1000 as u16);
// 向低类型转换时,超出的高字段被丢弃。
println!("1000 as a u8 is : {}", 1000 as u8);
// -1 + 256 = 255
// -1 的符号位对于 u8 来说是 +256;
println!(" -1 as a u8 is : {}", (-1i8) as u8);
println!("1000 mod 256 is : {}", 1000 % 256);
println!(" 128 as a i8 is : {}", 128 as i8); // -128
// 300.0 as u8 is 255
println!(" 300.0 as u8 is : {}", 300.0_f32 as u8);
// -100.0 as u8 is 0
println!("-100.0 as u8 is : {}", -100.0_f32 as u8);
// nan as u8 is 0
println!(" nan as u8 is : {}", f32::NAN as u8);
}